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The linear contact problem for a punch, represented in plan by a narrow ring (of variable thickness), the median line of which 
is a closed smooth contour, is investigated by the method of matched asymptotic expansions. Galin's hypothesis, according to 
which the pressure dist~:ibution in the transverse direction is largely identical with the solution of the corresponding plane problem, 
is proved. Various forms of writing the integral equation for the leading term of the asymptotic form of the pressure per unit 
length are given. Explicit solutions of a number of specific problems are obtained. © 1997 Elsevier Science Ltd. All fights reserved. 

Galin [1] obtained the limiting value of the bedding coefficient (relating the settlement of an elastic foundation 
to the mean pressure P(s) per unit length of the beam) for a beam, rectangular in plane, on the assumption 
(Galin's hypothesis) that the pressure distribution in a transverse direction is largely the same as that obtained by 
solving the corresponding plane problem. In particular, for a beam whose cross-section has a rectilinear horizontal 
base 

Pts) (0.1) 
p(s,n)= rc~-~-n  2 

Galin also formulated the problem of the pressure exerted by a punch, which is ring-shaped in plan, on an elastic 
half-space [2, Section 2, Chapter II, p. 168]. 

The first result in solving the axisymmetric problem of a plane ring-shaped punch, that is satisfactory from the 
practical point of view, was obtained by Yegorov [3, 4]. The approximate extremely simple formula he obtained 
for the contact pressure is identical with the exact solution in the case of a circular punch, while for a sufficiently 
narrow ring punch (thickness 2h) it reduces to (0.1) (P(s) =- (2r,.R)-IQ, where R is the radius of the median line of 
the ring-shaped region of contact and Q is the force acting on the punch). 

Without dwelling on the papers which have been published on the solution of the contact problem for a wide 
ring-shaped punch, we note that the first solution of the axisymmetric problem for a narrow ring-shaped punch 
was obtained by Aleksandrov [5]. Various forms have been given for the leading term of the asymptotic form of 
the contact pressure in the case of a punch with a plane base, among which is Eq. (0.1). Here the force Q acting 
on the punch is mair ly related to its displacement ~ by the equation 

~E 2~R5 o 
Q= 2(1- v 2 - - - - ~  ln (R/h)+ln2+ao;  aO =2,079 (0.2) 

The problem of th,: indentation of a ring-shaped punch into an elastic half-space due to the action of a vertical 
applied force was considered in [6, 7]. 

For a narrow ring-shaped punch, close in plan to circular, it was suggested in [5, 8] that Eqs (0.1) and (0.2) should 
be used as the approximate solution. 

A solution of the o3ntact problem was obtained in [9] for a punch with a base in the form of a narrow rectangle. 
An equation for the pressure per unit length was obtained using Galin's hypothesis. A discussion of this approach, 
and also another method of solving tke problem are given in [10]. 

The axisymmetric problem of the pressure of two ring-shaped punches on an elastic half-space was considered 
in [11]. An approach was proposed in [12] to the more general problem of the interaction of punches represented 
in plan by regions bounded by circles. 

Many papers have been published on the problem of calculating the contact pressures under a roller bearing. 
The complexity of this problem (the engineering side of the problem is discussed in [ 13, Section 5.6]) is due primarily 
to the fact that the contact area is not known in advance and has to be found when solving the problem. Nevertheless, 
the presence of a nars.ow contact area enables different approximate solutions, suitable for practical applications, 
to be found. 

The method of matched asymptotic expansions was applied to this problem in [14, 15]. Another approach, based 
on simplifying expansions related to Galin's hypothesis, was realized in [16]. The original method, which leads to 
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results similar to those obtained earlier in [14, 15], was developed in [17]. The case when the contact occurs along 
somewhat extended narrow regions was considered in [18]. 

It should be noted that some important features of the asymptotic analysis of the singularly perturbed problems 
considered were omitted in [14, 15, 17, 18], a mathematically rigorous foundation of which was given for the first 
time in [19, 22]. 

We know (see, for example, [13, Section 5.6]), that in the neighbourhood of ring-shaped zones, the stress state 
of the bodies in contact is essentially three-dimensional and must be considered as such in order to obtain correct 
results. In other words, whereas in the middle part under the prolate punch the region of local perturbations of a 
semi-infinite solid is described by a "plane" boundary layer (i.e. Galin's hypothesis is true), in the neighbourhood 
of the ends it is necessary to construct a "three-dimensional" boundary layer, as was done in [21]. 

No interpretation was given in [14, 15, 17, 18] of the fact that the limiting problem obtained in the final analysis 
(for an arbitrary fight-hand side) cannot be solved for every ratio e of the characteristic dimensions of the narrow 
contact zone. This fact compromises the whole asymptotic analysis of the problem: the asymptotic formulae must 
"operate" for any fairly small e > 0. Attention was first given to this in [1%22]; a method of eliminating this drawback 
was proposed there (details can be found in [23, 24] and Section 7). 

Despite the voluminous literature on the subject, the problem of calculating the contact pressures under a punch, 
which, in plan, takes the form of a narrow curvilinear ring, has not found a proper solution. Here we must emphasize 
that, at the present time, many authors regard the axisymmetric problem for a ring-shaped punch as a "hard nut" 
for demonstrating the power of complex mathematical methods for finding so-called exact solutions, but clear results 
in the problem of the off-centre indentation of a narrow ring-shaped punch into a half-space have not so far been 
obtained. The approach proposed below, on the other hand, is aimed at finding only an approximate solution (but 
at the same time an asymptotically exact one), which often turns out to be sufficient for practical calculations. 

We also mention two "mechanical" publications [25, 26], which the content of the present paper touches on as 
far as the method of constructing the asymptotic form is concerned. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Suppose  F is a s imple closed c o n t o u r  of  length 2 / in  the R 2 plane.  We will in t roduce a system of  local 
coord ina tes  (s, n)  into its ne ighbourhood,  where  s is the arc length and I n I is the  distance along the 
normal .  We will deno te  by e a small posit ive p a r a m e t e r  and describe a nar row ring of  variable thickness 
2h(e; s) = 2ell(s) ,  the median  line of  which forms  

F(e) = {(x 1, x2) • R2: S • [0, 21) , -e l l (s)  < n < eJ/(s) } 

Using the Papkov ich -Neube r  representa t ion ,  the contact  p rob l em of  the gradual  indentat ion of  
a smoo th  punch  with a plane base  in the form of  the region F(e) into an elastic half-space to a 
depth  

R3_= ItAxu(e; x) + (k + It)grad div u(~:; x) = 0, x • Ix: x3 < 0} 

O"31(11; X) = O'32(U ; X) = O, X 3 = 0, y = (Xl, x2) • R 2 

a33(u; y, 0) = 0, y • R=NF(~:) (1.1) 

u.~(l~;y,0) = - &  y • I"(E) 

= o(1), I,,I = (,,? + x:  + 

reduces  (see [2, 27]) to the mixed boundary-va lue  p rob lem of  the theory  of  ha rmonic  functions 

Axq~(i~;x)=O, xeR3_;  ¢~3¢p(E;y,0)=0, y e R 2 \ l " ( E )  
(1.2) 

~0(e;y,0)  = - &  y e r(~:); q~(e;x) = o(! ) ,  Ix I --* ** 

Here  ~, and  Ix are  the Lam6 paramete r s ,  o0(u ) are the componen t s  of  the  stress tensor  cor responding  
to the vec tor  u of  the displacements  of  the points  of  the half-space,  and 03 = 0/Ox3. 

The  pressure  o f  the punch on a semi-infinite body  is calculated f rom the fo rmula  

p(E; y) = -21a(Z, + la)O. + 2it)-1O3~p(e; y, 0), y e I"(E) (1.3) 

Notes 1.1. The assumption that 8 = const is only made to simplify the discussion and is removed in Section 3. 
Since, by the maximum principle 83~e; 7, 0) < 0 when 7 e F(e), we can assert a priori that the contact pressure 
corresponding to the solution of problem (1.1) is positive. 
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1.2. The parame'ter e is introduced formally in order to facilitate the description of the asymptotic method applied 
to the singularly perturbed boundary-value problem (1.2). In the final formulae we will revert to the actual thickness 
of the narrow punch 2h(s). 

2. C O N S T R U C T I O N  OF THE A S Y M P T O T I C  FORM OF THE S O L U T I O N  
OF P R O B L E M  (1.2) 

Remote from l?(e) the function ¢ is mainly represented in the form of a simple-layer potential, whose 
density is concentrated on the contour F 

1 y ( t ) d t  

o ()';x) = -~-~ ! 4 i x , -  Yl (t)) 2 + ( 1 2 -  y2(t)) 2+ x2 
(2.1) 

Here (Y l ( t ) , y2 ( t ) )  are the coordinates of a point of F, dt  is an element of the arc length, and ,/is a function 
to be determined. The quantity 2g(k + B)(k + 2g)-l~(s) -- P ( s )  has the meaning of the contact 
pressure, calculated per unit length of the arc of the median line of the ring-shaped region of contact 
(see (1.3)). 

In the neighbourhood of the contact zone, we construct a solution of the boundary-layer type. To do 
this, we must first write the Laplace operator in local coordinates 

(2.2) 

where k ( s )  is the curvature of the curve F at the point s. Second, we introduce into (2.2) the "fast" 
variables 

(rll, ~%) = e-](n, x3) (2.3) 

keeping the scale for the s coordinate along F unchanged. Further, we expand the operator (2.2) in a 
formal series in powers of e and separate the principal part 

Hence, the boundary layer mentioned turns out to be "plane" and mainly satisfies the following 
equations, in which the s coordinate occurs as a parameter 

Anw(s ;11 )  = O, 11 ~ R 2 - = {TI: r12 < 0} (2.4) 

In, l< m,); In,l> 
We emphasize that relations (2.4) do not completely define the function w--there is no condition 

imposed on the behaviour of w01 ) as 1111 = (rl~ + r12)v2 ---> ~. Since the functions v (at a distance from 
F(e)) and w (close to F(e)) must serve as an approximation to the solution of problem (1.2), they must 
be matched in the intermediate region. In other words, we must first obtain the asymptotic form of the 
potential (2.1) as (n 2 + 4 )  1/2 ---> 0 (which, in the limit, degenerates into a divergent integral). Then, 
using the result obtained, we establish the nature of the behaviour of the solution of problem (2.4) at 
infinity and construct the boundary layer. Finally, both representations are matched, eliminating the 
arbitrariness assumed when solving both limiting problems. 

3. R E G U L A R I Z A T I O N  OF I N T E G R A L  (2.1) 

Suppose Yl = f l  (s), Y2 = f2(s) is a natural parametrization of the closed curve F without self-intersection 
points (the functionsfl and f2 have the required smoothness). To fix our ideas we will assume that when 
going round F in the direction of increasing s coordinate, the region enclosed by F remains on the left. 
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In the three-dimensional neighbourhood of the contour F we change to (s, n, x3) coordinates, the 
relation of which to the Cartesian coordinates is given by the formulae 

xl = fl(s)-nf2(s),  x2= f2(s)+nfl'(s), x3=x  3 (3.1) 

where the prime denotes differentiation with respect to s, and n is the distance (taking the sign into 
account) along the inward normal to the arc F C R ~. We will further introduce polar coordinates (r, ~0) 
in planes normal to F: n = rcos q~, x3 = rsin q~, q) e [-Tt, 0]. 

The square of the distance between a point in the region of F with local coordinates (s, n, x3) and a 
point on F with coordinate t can be written, by virtue of (3.1), as 

Rr(S,t) 2 = Ro(s,t) 2 + r 2 - 2rcosq){f~(s)Fl(s,t) - fl'(S)F2(s,t)} (3.2) 

Ro(s,t)=[Fl(s,t) 2 + F2(s,t)2]~; Fk(S,t)= fk ( s ) -  fk(t ) 

Here Ro(s, t) is the distance between two points on the con to~  F with coordinates s an& t. 
Taking into account the fact that f i (s)Z+ f~(s) 2 = 1 and fi'(s)f{(s) + f~'(s)f~(s) = 0, and that the 

- -  H • • • curvature is expressed by the formula k(s) - f~ (s)f~(s) -f'{(sff~(s), we obtain 

R 0 (s, 02 = (s - 02 [1 + O(k(s)2 Is _ tl 2 )], t ~ s (3.3) 

f~(s)Fl(s,t)- f((s)F2(s,t ) = 2-1k(s)(s- t)2[I + o(1)], t ~ s (3.4) 

Representing the function (2.1) in the form 

v(y;s ,r ,q~)=_y(s)s  dt 1 i ' y ( t ) -y(S)dt  
2n rR,(s,t) 2rtr ~ (3.5) 

we see that only the first integral in (3.5) will be divergent at the points r = 0. We will obtain its first 
two terms of the asymptotic form as r = (n 2 + x2) v2 ~ 0. we have 

dt i d ( s - , )  . s i t  d ( t - s )  - _  i A(s-t?dB( s .,+t a ( t_S)dB( t_s )= 
r J R,(~.t) =-:~_ R',(~.t) , R,(s,t) - .,-t R,(s,t~ -t)+ ! R,(~,t) 

$ 

_ 2r Inr+Y. A(l) B(I)+ S B(s - t )  dA(s-t''''~) s+t - s )  
R,(s,s) ± Rr(s,sS"l) s-t Rr(s,t) S B(t-s)dARr(S,t)s  

A(x) = ~x 2 + r 2 , B(x) = ln(x + ~ x  2 + r 2 ) 

Separating the principal part, we take the limit 

dt l In(2/) 
/ ~ = - 2 1 n r + ~  Ro(s,s+ l)+ 

i ( ( + ln[2(s-Old s - t  _ l  - ln[2( t -s) ld  . t - s  
.,-i ~ ( s , t )  : , ~ ( s , t )  

r . ,+l (  Is-/I-l) at = - 2 I n - - +  S | +o(1), r--*0 
21 .,_t~ Ro(s,t) ) l s - t l  

1)+o(I)  = 

(3.6) 

Hence, from (3.3)-(3.6) we obtain 

v(y;s,r,(p)= ~l~)(ln-~l - J ° ( s ) ) _ l  (j~l)(s)+o(i) ' r--* O (3.7) 

' (  ) 1, v(t)-v(s)_ 1 i t 1 1 dt, ( J y ) ( s ) = - j  - - ~  at 
J ° ( s ) = 2  ,_t\ Ro(S,t ) Is tl 2 r  Ro(S,t) (3.8) 
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H e r e  2 / i s  the length of  the con tour  F. 

Note 3.1. In ord(:r that the previous calculations should hold good, it is sufficient to require that the contour F 
is smooth, while the function 7, for example, satisfies the Lipschitz condition on it. 

Finally, the residue in (3.6) can be estimated by the quantity O(kmr In [kmr]), while in (3.7) it can be estimated 
by the quantity O(C~kmr In [kmr]), where km is the maximum curvature of the contour, while Cz is the sum of the 
Lipschitz constant, multiplied by 2/, and the maximum of the modulus of y on F. 

4. A N  E Q U A T I O N  F O R  D E T E R M I N I N G  y 

By virtue of  (3.7) the me thod  of  matched  expansions [28-30] requires  a logari thmic increase at infinity 
of  the solution ol y Eqs  (2.4) (see the end of  Sect ion 2). 

It  can be shown directly that  the funct ion 

,41> Y ( q ) = x  -I 
t I IJ 

where  it is unders tood  that,  under  the radical, we have the branch that  is ho lomorph ic  in the plane cut 
along the section [ -H,  HI  of  the real axis, and which takes pure  imaginary values at the cut edges, satisfies 
the relat ions 

AnYOq)=0, ~ R 2 ;  Y(~t,0+)=0, In~l<Hfs) 

02r(nt,0)=0,  Intl> H(s) 

Y(q) = 7t - I  [21 ~1 H(s) -~ ] + O(1~ 1-5 ), I ~ql ~ ** 

(4.2) 

Notes 4.1. In order to obtain (4.1), it is sufficient to recall that the function under the modulus sign conformally 
maps this plane with the cut onto the exterior of a circle of radius H. 

4.2. When the ba,se of the punch is "wavy" in a longitudinal direction (i.e. 8 = 5(s)), all the discussions remain 
true if contact is made over the whole region F(e). This leads to the additional requirement 

3(s) > O, s ~ [0, 2/) (4.3) 

which the solution of the integral equation obtained below must satisfy. Otherwise, instead of a contact problem 
with a fixed contact, area F(e) we obtain a more complex problem with a contact zone---a certain subset of F(E), 
unknown in advance. 

4.3. The leading term of the asymptotic form of the solution of the problem of the indentation with a skewness 
of a smooth ring-shaped punch with a flat base into an elastic half-space is also sought using the above algorithm. 
This case reduces to the previous one. 

Suppose 131 and I~z are small angles of rotation of the punch about the xl and x 2 axes, respectively. The penultimate 
boundary conditio~ in (1.1) can then be changed (see, for example, [27]) to the following 

u3(¢.;y.O)=-8-~2yl+~ly2, y ~ I"(¢) 

Changing to local coordinates (s, n) and making the change of variables (2.3), the first boundary conditions in (2.4) 
can be rewritten in the form 

w(s:n,,o) = -8 -132 / t ( s )  + Pd2ts), ]'qd < His) 

4.4. In the genentl case when 8 = ~(s; "ql), we represent the boundary layer in the form 

w(s;q) = w° (s;'q)+ y(s)V(s;'q) (4.4) 

where w ° is the soltttion of Eqs (2.4) bounded at infinity, with right-hand side 8(s; lh) (such a solution exists and 
is unique). 

The constant in the asymptotic form 

w°(s:,q)=-c°(s)+O(Ml-l), II11--*** (4.5) 

is calculated using the second Green's formula for the Laplace operator. Taking (4.1) and (4.5) into account we 
obtain 
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H(s) 
c°(s) =- ~ ~(s.tlt)a2Y(~l,O)drll 

-H(s.b 

The pressure under the punch must, of course, be negative. The condition 

~ 2 w ( s ; l q 1 , 0 )  ~ 0,  - H(s)  < 1"11 < H(s )  

together with (4.3) ensures contact over the whole set F(e). 

(4.6) 

We will represent the solution of problem (2.4) in the form 

w(s; ~q) = -~3 + 7(s)Y(s;~l) (4.7) 

Note that, by virtue of (4.2), the following asymptotic formula holds (see note 4.2) 

w(s; ~ )  = n- 'V(s) Int21~IH(~)  -' 1 -  a(~) + 0 ( I~ I - '  ), oo (4.8) 

We recall that the function v, at a distance from the contact zone, and w, in the region of the local 
perturbations, must serve as an approximation to the required solution of problem (1.1). In the 
intermediate zone, where the other asymptotic representation must also "operate", namely, at distances 
I ~1 l/H(s) of the order of 1/~/e, or (which is the same thing) when r/h(s) = O(~/e), they must differ only 
slightly (by quantities that are small compared with unity). To achieve this, we will derive the required 
relation connecting y and 5. 

In (3.7) we change to fast coordinates (2.3) 

u (y,s,e.~) = n-~"C(s)0n[el'~l(2t)-' ] -  J° (s ) ) -  ~-~ (Jv)(s) + o(El Ik,. In(el~Ik,,,)), e ~ 0 (4.9) 

and compare (4.9) with (4.8). The difference v(y; s, ell) - w(s; 11) will be a quantity O(~/(e)ln e) when 
I11 I/H(e) = O(1/~/e) provided 

Y(s){lln el + 2 In 2 + In[IH(s) -I ] + jo (s)} + (Jy)(s) = nS(s) (4.10) 

We recall that the solution of integral equation (4.10) must satisfy condition (4.3), which essentially 
expresses the requirement that the ring-shaped punch must fit the surface of the semi-infinite body over 
the whole contact area. 

Using the formula O2[f(~l)l-lRe {f(11)Off01)} in which ~1 = 111 + irl2, and the bar indicates complex 
conjugation, we will seek the derivative O2Y and show that the contact-pressure distribution 
corresponding to (4.7) is identical with (0.1). 

Note 4.5. In the situation described in note 4.4, the right-hand side of (4.10) changes to 

m.~b 8(s;rll ) drlj 
:_.,,,I 

We emphasize that, in addition to condition (4.3), which the solution of the modified equation (4.10) 
must obey, it is necessary to satisfy condition (4.6) for the function (4.4), established from the known 
value of y. 

5. O T H E R  F O R M S  OF W R I T I N G  T H E  S O L V I N G  E Q U A T I O N  

Suppose (to fix our ideas) that the unit circle I ~ I < 1 in the plane of the complex variable ~ = pe/° 
is transformed by means of a conformal mapping 

z = c 0 ( ; ) ;  t o ' ( ; )  = d t o ( ; ) / d ; ,  o, I ; I < I 

into the simply connected region D in the plane of variable z = Yz +/Y2" Then a certain simple closed 
curve (situated inside D), which as before will be denoted by F, corresponds to the circle p = const, 0 

[0, 2~). Here it is appropriate to take the polar angle 0 as F. 
In this case, taking into account the fact that Z(x) = Pl to'(Pe/~)l is the coefficient of variation of linear 
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dimensions, we obtain, instead of (2.1) 

I T(x)~(x)ds 
: 2 (5.1) v (y; x) = - ~ 4(xt _ Re {a(pe ~))2 + (x 2 l Im ¢o(pe i~))2 + x3 

The square of the distance between the point with local coordinates (0, n, x3) and a point on the 
contour with coordinate x, recalling the notation of Section 4, can be written in the form 

Rr(O,x) 2 = Ro(O,x) 2 + r  2 _ 

e_iOto, t_eiO" • .eiOo),._eiO.] 
-r,zos(p [to(pge)-co(pei')] ca" : ; "  '+[ tO(pei°)-ca(pe,')] " t P / e " ' }  (5.2) 

(p ) (o (,pe ~1 J 

Here Ro(O, x) = I {o(9 e/o) - ¢o(pei~)l is the distance between two points belonging to F. 
Since, as x --+ 0, we have 

Ro(O.s) 2 = 4~.2~'(pe'*) 2 si .2[(o-  s)/21{| + o( lo~"(pe") /~ ' (p, , 'e) l (e-  s)) ) 

the following inequality holds 

X(s)dx e.,t dx • ~< const 
r ~ - e ! ~  4 ( 0 - s )  2 + (r / )~(O)) 2 

On the other hand, since the expression in braces in (5.2) is a quantity O(~)(O)2km(O - s) 2 as s --) O, 
we have the limit 

f X(s)ds f ~(s)ds ~< constrk,, ~ 
~ z I n , _ , ,  r '--)0 

~-Rr(O,S) r~/R0(O,s)" + r  2 

k . , =  max k(O), k(O)=~(o){l+RePeiet°"(Pe'°)l 
e~[o.2,) ra)' (pe ie ) j 

These expressions enable us to omit complicated calculations and to write the final formula, namely, 
the asymptotic form of the function (5.1) 

v (y;O,r,~p) : 7t-ly(O){In[r / (2~'X(0))] - J°(0)} - n -I (Jiy)(0) + o(I). r ---) 0 

J°(O)=To._..kRo'-~.~: ) 1ol_sl as, ( j .v ) (o)=z j "  . . . .  x('~)as z o K0(o,s) 

We introduce the integral operators 

1 ~ y ( s ) - y ( O )  d- t e+n 
(JY)(0)=~ ° 2lsi ~20--~-211 x. (k,y)(O)=2e! Ki(O,s)y(s)dt (5.3) 

K t (O, s)  = ~ ( s )R  0 (0, s)  -I - 2 -I Isin[(s - 0) / 211 -t 

Taking into account the fact that 

10+.( l ) 
2e/.i21sin[(s-o)/2]l-1o 1-sl as= 21n2-1nn (5.4) 

we can reduce the equation for the density 7 to the following form 

y(O)llln el + 4 In 2 + In[){(0)H(0) -I ]} + (Jy)(O) + (kly)(0) = mS(O) (5.5) 

Example. The Zhukovskii function R{I~ = 2-1({ + {-1) transforms the exterior of the unit circle into a plane 
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with a rectilinear cut. An ellipse with semiaxes RI(p + p-1)/2, Rl(p - p-b/2 and eccentricity e = 2J(p + p-l) 
corresponds to a circle of radius p > 1 in the z plane. We have 

[¢o'(pe/~)1 = 2 -I Rl(I + p-2)(i - e 2 cos 2 X) y2 

Ro (0,x) = Rip( 1 +p-2 )lsin[(x_ 0) / 211( 1 _e 2 cos2 [(0 +x)/2]) Y2 (5.6) 

K; (0.x) = ~-1 sign(e- x)e 2 sin[(0 +3x) / 2Ix 

x{l - e 2 cos 2 [(0 + x) / 21+ (I - e 2 cos 2 [(0 + x) / 21) ~ (i - e 2 cos 2 x))~ }-I 

We will now assume that  the curve F is star-like with respect to the origin of  coordinates. It can then 
be parametrized using the polar angleyl  = p(0)cos 0,y2 = p(0)sin 0; here 

Ro(0,x) 2 = (p (0) -  p(z)) 2 + 4p(0)p(x)sin2[(0- x) / 2] 

We will change the variable in formulae (3.8). Taking into account the fact that the length e lement  
ds is equal to ~(x)dx, where ~(x) = (p'(x) 2 + p(x)2) lf2, while the arc length is expressed by an integral, 
we obtain 1 2n ~(1~) 

(J'/)(S(0)) = -~ ! - ~'(0){(~)dt --- (J~T)(0) 
R0(0, ) 

j0  (S(0)) = jo  (0) + In ~(0) + ln(n / I) 

s(o)=I (z)ax, . =io:,tRoT67,z  l0 x[ 

Equation (4.10) correspondingly becomes 

T(0){lln el + 2 In 2 + In[n(p' (0)  2 + p(0) 2 ))~ H(s) -l ] + jo (0)} + (J3T)(0) = rt$(0) (5.7) 

We introduce the integral operator  

(k3T)(O) = 2 e i n  K~ (0, "Oy(x)dx, 
0 - ~  

K3(0, X ) = - -  
~(~)  l 

Ro(O,'c ) 2[sin[(O- x) / 211 

Recalling that  the operator  J is defined by the first formula of  (4.3), we can rewrite (5.7) in the following 
final form 

~'(0){lln el + 4 In 2 + ln[~(0)H(0) -i ]} + (J~¢)(0) + (k3~')(0) = rcS(0) (5.8) 

6. T H E  P R O P E R T I E S  OF T H E  O P E R A T O R  J A N D  T H E  A P P R O X I M A T E  
S O L U T I O N  OF T H E  I N T E G R A L  E Q U A T I O N  ON F 

The properties of the operator  J were fully investigated in [22-24]. In particular, it was shown by 
direct integration that  the following equations hold 

(JtP+_k)(O) =-~.kq~±k(O) (k = 1,2 .... ) 

k-l 1 (6.1) q~±~(O)=cosk0+isink0, ~-k =2)-'. 2 j + l  
j=0 

where, by formula (0.132) of [31] 

0<Z.  k _ ( l n k + 2 1 n 2 + C ) < ~ l / ( 2 4 k  2) ( k=1 ,2  .... ) (6.2) 

(C = 0.577 is Euler 's  constant). 
We will indicate, by a simple example, the difficulties that arise when constructing the solution of  

Eqs (4.10), (4.11), (5.5), (5.7) and (5.8). 



:['he pressure of a narrow ring-shaped punch on an elastic half-space 807 

Consider the case of a ring-shaped punch of constant thickness 2h(e) = 2eR, when the contour F 
coincides with a circle of radius R. The solving equation then has the form (see Section 5) 

y(e)(lln e[ + 4 In 2) + (Jy)(O) = 7t8(0) (6.3) 

Suppose the right-hand side in (6.3) is represented by a Fourier series 

~i(O) = --'~2- + ]~(A, cosk0+ BksinkO ) 
k=l 

We shall also attempt to find a solution in the form of a series 

T(O) = a-~°+ ~,(a, cosk0 + bt, sin/d)) 
2 k=l 

Substituting (6.4) and (6.5) into (6.3) and taking (6.1) into account we obtain 

a0 Iinsl+41n2, b, IInsl+4in2-~.,  B, (k--!,2 .... ) 

It can be seen that solution of Eq (6.3) does not exist for all small values of e. 

(6.4) 

(6.5) 

(6.6) 

In fact, when 8 = e, = 16exp(-~) the denominator in the second formula of (6.6) vanishes. Then, by virtue of 
(6.2) {e k } is an infinitely small sequence. However, if 8(0) is a trigonometric polynomial of degree m, the function 
T is defined for all positive values of e less than E,,, and is also a trigonometric polynomial. 

We emphasize that the results of an asymptotic analysis must hold when the parameter 8 changes 
continuously in the range (0, e0), where e0 is some fixed number. We cannot achieve this situation in 
the general case if we formulate the condition for complete satisfaction of the solving equation. We 
recall that in all the previous calculations we only retained terms O(1) and O(I In 8 I), and dropped 
those which approached zero as the parameter 8 decreased. As a consequence of this there is no need 
for an exact solution of the final equation. 

We now return to the case (6.4) and we will assume that the function 8 is continuously differentiable 
along F, and also has a bounded second derivative. 

Note 6.1. If the base of the punch has a "discontinuity" at a certain point (i.e. the first approximation as regards 
the function 8 breaks down), the asymptotic constructions given above lose their meaning for the reason that in 
the neighbourhood of the discontinuity the stress state of the half-space will be three-dimensional and is, therefore, 
not described by a plane boundary layer. 

On the other hand, the second derivative of 8 cannot take greater values because the curvature of the base of 
the punch must not be too large. Otherwise, we would contradict the assumption that contact must be made over 
the whole set F(E). 

Suppose [ 8" (0) l ~< C (2), 0 a [0, 2r 0. Then, for each small e > 0 the trigonometric polynomial 

N 

ye(O) = - ~ +  ~.(ak cosk0+ bk sin k0), N E =[8-J]+i  (6.7) 
k=l 

in which the coefficients are defined by (6.6), while the integer part is denoted by the square brackets, 
a residual of the order of 8 remains in Eq. (6.3). In fact, since 

Ak 8(0) j "~d0 1 2~_ ,,r COS kS) =-_-:r2 } ~(0) ~ . . ~d0  
B k 7t o [sinkOJ rtk 0 Lsinrvj 

the residual, the remaining Te in (6.3), can be estimated from the relation 

~ (A kcoskO+B ksinks) ~< x/2C (2) ~ I 
k=Nt  +1 k=Ne+l -'~ 

k 1 ~ 2 N t ( N  ~ + I) ~ N - ~  k. /=2 -- 
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We have used formulae (0.237.3) and (0.133) from [37] above. 
Hence, bearing in mind the inequality 1/Nt <~ e, we conclude that 

max y~ (0)(]ln e I + 4 In 2) + (J'/t)(0) - rcS(0)] ~< ,~f2c(2)~ (6.8) 
0G[0,2n) 

The function (6.7) does not satisfy Eq. (6.3), but because of the smallness of its residual in this 
equation (see (6.8)) it is suitable for constructing the asymptotic form of the boundary-value problem 
(1.2). 

7. E X A M P L E S  

1. A ring-shapedpunch with a flat base. The intensity of the contact pressure, calculated per unit length of the 
median circle of radius R, mainly satisfies the equation 

P(0)(lln h +41n2)+(JP)(0) rd/ = ~ ( / i  0 + 13 2 Rcos0 - ~ l  Rsin O) (7.1) 

Here h is the half-width of the ring, 5o is a translational variable, and [~1 and ~ are the angles of rotation of the 
punch abo,: the Yl and Y2 axes, respectively. 

If the punch is indented without misalignments (the axisymmetrical problem), the force acting on the punch is 
related to its penetration by the equation 

~E 2 rLR50 
Q= 2( l -v  2 ) In(RIh)+41n2 (7.2) 

This equation is essentially similar to the leading term of the asymptotic form for Q constructed earlier [5] 
(compare (7.2) with (0.2)). 

By (6.6) the solution of Eq. (7.1) has the form 

p(o)-- ^ -  2 

If (as is usually the case) instead of 5o and 151, ~ we know the value Q of the force pressing the punch, and the 
coordinates of its point of application (y$,y]), then, in addition to (7.2), we also have from the equilibrium equations 
of the punch 

Note that conditions (4.3) will break down if (y~/R) 2 + (yl/R) 2 >~ 1/2) 2. We then encounter the problem of an 
unknown contact area, which is considerably more complicated than the (linear) problem considered. 

The expressions for the forces and moments acting on a non-flat ring-shaped punch are as follows: 

2Jr 
nE R f6(0)d0 

Q = 2 ( l - v  2)A 0 

- u , J  Q-- ls(o) . ^ a0 
2(l-v  2) A-2  0 I smuj 

2. The effect of  a load acting outside the punch. We can write the vertical displacements of the boundary of the 
half-space in the Boussinesq problem (see, for example, [27]) at points lying on a circle of radius R (Fig. 1) as 

IrE L u3(al;0) = 1 =A°+  ~,Aracosm0 (7.3) 
1 -v2 QI .~l_2cos0+k 2 2 m=l 

A0 -~-IK(k). At =4(nk)- I[K(k)-E(k)]  (7.4) 

(k)m-2n~__ (2n-3)" (2n+2m-3) , , (k)  2~ 
A m = 2 '" (m = 2,3,...) (7.5) 

I ( n - l ) !  ( n + m -  1)! 

Here k = R/L, while the distance from the point of application of the point force Q1 to the centre of the circle 
will be denoted by L; K and E are the complete elliptic integrals of the first and second kind. Formulae (7.4) 
correspond to (3.674.1) and (3.674.3) of [31], while (7.5) is obtained from (9.112) of [31]. 
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% 

Fig. 1. 

If the punch is impressed so that its base can be assumed to be parallel to the x3 = 0 plane, the pressure per 
unit length should mainly satisfy the equation 

P(0)A + (JP)(0) = 7tE[2(l - v 2 )]-I (8 ° + u3 (QI ;0)) (7.6) 

the solution of which is given by (6.5)-(6.7) with the sole difference that, for practical needs, in the sum (6.7) it is 
sufficient to retain only the first few terms, since the right-hand side (7.6) is infinitely differentiable. 

To achieve this gradual penetration of the punch we need to apply the following force to it 

with eccentricity 

Q 1 r =2E R8 } 0 2kK(k)Q I 
J 

(7.7) 

Y*._~.l=_ A [K(k)-E(k)]QI 
R A - 2  n2EI2(l_v2)]-IR$o_kK(k)Q I 

ff the position of the force which is pressing the punch is fixed (for example, if we assume that its axis of action 
passes through the centre of the punch), the resultant displacement of the punch will also include a certain rotation. 
Then, we have the following e~luation for the density P 

P(0)A + (JP)(0) = rcE[2(l - v 2 ) ]  -I (80 +132RcosO+u3(Qi ;0)) 

the solution of which can also be found from (6.7)-(6.7). Here the value of the settlement of the punch ~0 is found 
from (7.7) using the known value of the force Q, while the rotation of the punch 132 is found from the condition 
for the principal moment of the loads acting on the punch about they2 axis (which intersects the line of action of 
the force Q) to be zero, and is equal to 

~2 = 4(1 ~- v2)Q [K(k ) -  E(k)] (7.8) 
n'ER" 

3. The logarithmic asymptotic form. By (5.5) and (5.6) the pressure per unit length under the punch, which we 
can represent in plan by a narrow eurvilinear ring of constant thickness 2h, the median line of which forms an 
ellipse with eccentricity e a.nd semimajor/txis a, can be found from the equation 

nE 16a 
(7.9) 

This equation (like, however, the equations which arose earlier) contains a large parameter, and hence its solution 
can be expanded in an asymptotic series in inverse powers of A 

P~0) - A-IPi ~0) + A-2P2 (0)+... (7.10) 

PI ( 0 )  = nE[2(l - v='  )]-i I~ (O)  (7.11) 
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P2 (0) = - rtE[2(l - v 2 )]-l {2-1 ~5(0) In( I - e 2 cos 2 0) + (Ji~)(0)+ (kl~5)(0) } (7.12) 

Pj +l (O) = -2 -~ Pj (O)In(l - e 2 cos 2 0)- (JP/)(O) - (k~ P: )(0) (j = 1,2,...) (7.13) 

Using the first two terms (7.11) and (7.12) of expansion (7.10) we can obtain qualitatively the correct contact 
pressure distribution pattern, while for a sufficiently narrow punch we can also obtain numerical results that are 
quite suitable for practical calculations. 

If the eccentricity of the ellipse is small, the fight-hand side of (7.12) in turn can be expanded in a power series 
in e 2. Thus, for a punch with a flat horizontal base 

nE I+ ~O( e4 i (7.14) 
P(0)= 2(I-  v:) 6A ~ A J 

As might have been expected, the maxima of the pressure per unit length (7.14) occur at the points of greatest 
curvature of the median line. 

4. The interaction between ring-shapedpunches. In the same way as was done in Sections 2-4 (see also [18]), it is 
also not difficult to derive the solving equations for the pressures per unit length for a system of punches when 
contact occurs over several narrow regions. 

As an example, the system of equations which describes the interaction between two ring-shaped punches with 
fiat bases, takes the form 

p~l)(9)l n 16R l +( jp( i ) ) (0  ) = nE t6(l) + ~ l )R I cosO-131t)Ri s in0) -  
hi 2(1_ v2) , 0 

_ k._L2 J p ( O , . t )  - I  p(2)(x)d'c 
2 - / l  

(7.15) 

e(2)(x)ln 16R2 + (JP(2))(x) = ~ ( 5 ( 0  :) + 13<~2)R2 cos x.- ~12)R2 sin x ) -  
h 2 

_ k..AL ~p{0,x) -I p 0 ) ( 0 ) d  0 (7.16) 
2 

p(0, x) 2 = 1 + (k I - k 2 )2 _ 2(kl cos0 + k 2 cos x) + 4k I k 2 cos 2 [(0 + x) / 2] 

(the notation used is shown in Fig. 2), where k 1 = RI/L and k2 = R2/L. 
The approximate solution of  the problem for a system of widely separated punches can be constructed using 

the results obtained in paragraph 2 of this section, which uses ideas proposed previously in [32, Section 7]. Namely, 
removing one of the punches, we determine the contact pressure under it on the assumption that the action of the 
remaining punch on the half-space is replaced by the action of a point force applied at the centre of its median 
circle. Here, by (7.7), the approximate expressions for the forces acting on the punches is found from the system 
of equations (cyclic substitution of the subscripts 1 and 2) 

n2E RiS(o D 
2klK(kl) Q2 = -v 2 (I <--->2) 

Ql+ln(16Rj/hl) 1 ln(16RiIh l) 

If the geometrical characteristics of the punch bases are the same and here ~l )  = ~2), 13tl) = 13~z)l~l) = ..~2), 
then p0) = p(2), and Eqs (7.15) and (7.17) reduce to a single equation 

Fig. 2. 
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2_,L 2 ; j  
nE 

- 2(I - v :z ) '(50 + 132 Rc°s0 - [~1Rsin O) 

In this special case, when we know a priori the forces Q1 = Q2 impressing the punches, the lines of action of 
which pass through 1:he centres of the punches, formula (7.8) gives an approximate expression for the value of the 
angle at which the punches are inclined to one another. 

The axisymmetric problem for narrow ring-shaped punches for the most part reduces simply to a system of linear 
algebraic equations relating the forces acting on the punches to the indentations of the punches. 

5. Solution o f  the inverse problem. We will consider the problem of determining the punch thickness for known 
values of the indentation and the pressure per unit length (compare with [18]). 

In particular, if 5(0) -- 50 and P(O) -= P0, we have (see Section 5) 

I / nE 5° +(k! 1)(0) t h(O)=I6p'~'(Pei°)]exPL 2(I -v2) eo 
) 

1 O + ,  

(kl l)(O) = -~ o! Kl (O, ~)dx 

In general, the solution of this problem can also be reduced to mechanical quadratures. 

8. C O N C L U D I N G  O B S E R V A T I O N S  

First, the p roce~  of constructing the asymptotic form can easily be extended; the necessary basis for 
this is provided by [19-22]. 

Further, the asymptotic representations of  the solutions written in the previous sections, generally 
speaking, have a f~rmal character and therefore cannot serve as a basis for Galin's hypothesis; the errors 
must be characterized accurately. Since an even extension of the solution of  problem (1.2) from R 3 to 
Ra~{x ~ R3: s ~ [0, 20, --ell(s) < n < eJ-/(s), x3 = 0} leads to a problem which has already been 
investigated, we can refer in part  to the results obtained in [22-24], where the residuals in the asymptotic 
formulae were estimated in various metrics. In particular, estimates were given for the deviations in 
modulus and in the "energy" norm. Due to the presence of singularities (at the punch edges) when 
considering higher-order derivatives it is necessary to change to weighted n o r m s - - t h e  corresponding 
inequalities can also be found in [33]. 

The method of  matched asymptotic expansions has not been widely used in the theory of contact 
problems (see the review [3] and also [35]). The form of the punch represented here is not, of  course, 
the  only one for which this method is effective. One can, for example, use it to investigate the problem 
of a punch with a base formed by removing one or several spaced small zones from the fiat area. We 
emphasize that this problem is much simpler than (1.1) or (1.2), since (in accordance with classification 
[33]) the singular perturbation of the boundary in it is local (concentrated in small neighbourhoods of 
isolated points), and in (1.2) it is non-local (it is "spread" along a curve). 
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